TP­LINK TL­PA551 — передача данных через силовую сеть. Вай фай роутер в розетку: репитеры, ретрансляторы Интернет по силовым проводам


PLC-технология HomePlug AV (PLC - Power Line Communication/Carrier) разработанная группой компаний HomePlug Powerline Alliance, позволяет использовать бытовую электропроводку для высокоскоростной передачи данных - от одной розетки к любой другой.

Оптимален для:
- использования имеющихся электрических розеток питания у вас дома, на работе, предприятии, для создания нового высокоскоростного подключения к Интернету. Добавьте устройство с разъемом Ethernet к своей сети всего в два простых шага. Просто вставьте адаптеры в электрические розетки и подключите свое устройство к порту Gigabit Ethernet, – идеальное сетевое решение, если нет возможности проложить кабель витую пару, например: сделали ремонт, всё так красиво, а очень нужна интернет розетка в другой комнате.

Характеристики подключения по стандарту HomePlug PowerLine.
Скорость сетевого подключения через электрические провода составляет 14 Мбит/с. и выше.
Дальность действия - примерно 500 метров. Этого вполне хватит для одного подъезда, или даже дома.
Но стоит учитывать, что распределительная сеть - трёхфазная, а к домам подводится по одной фазе и нулю, равномерно нагружая каждую из фаз. Так что, если вы подключены к одной фазе, а ваш сосед - к другой, то воспользоваться подобной системой не удастся. Адаптеры HomePlug PowerLine работают полностью на аппаратном уровне, без драйверов и программного обеспечения. Соответственно, они совместимы со всеми операционными системами Windows на компьютерах с процессором от Pentium 166.

Принцип работы, схема применения.

Применение Powerline-адаптеров позволит пользователю подключаться к сети без прокладки новых проводов в любом удобном месте дома, где есть электрическая розетка. Кроме того, Powerline-адаптеры HomePlug AV представляют собой оптимальное решение в ситуации, когда требуется подключение к домашней сети или Интернету в тех местах помещения, где прокладка новых кабелей нежелательна или невозможна, а беспроводная сеть Wi-Fi не обеспечивает необходимого покрытия или неэффективна.

PLC-технологии для домашних сетей.


В частности, известные компании предлагают связывание своей бытовой электроники посредством проводов силовой электросети:
Ожидается, что PLC-технология сможет дать новый импульс развитию средств передачи данных по линиям электропитания и сделает возможным прямой доступ в сеть практически из любой точки земного шара по минимальной стоимости. Пока технология не получила широкого распространения, однако в ближайшем будущем можно ожидать, что она серьезно потеснит альтернативные технологии и приведет к существенным изменениям на рынке провайдерских услуг: к снижению расценок на доступ в сеть, включая цены на подключение по коммутируемой телефонной линии и по выделенным линиям. Если PLC-технология получит распространение, она сможет значительно изменить расстановку сил на рынке предоставления услуг Интернет-доступа и будет способствовать разработке новых принципов проектирования силовых электрических сетей - с учетом как энергетических, так и коммуникационных требований.

Не надо прокладывать никаких новых коммуникаций - электропроводка есть везде. По ней-то и передаются данные.

Добрый день, Друзья! Приветствую вас на нашем обучающем Интернет-портале “С Компьютером на “ТЫ” .

В предыдущей статье мы говорили о , разобрали наиболее популярные. Но иногда так бывает, что привычными методами подключения (сетевым кабелем Ethernet или беспроводным соединением Wi-Fi) воспользоваться не удается.

Причинами на то могут быть сделанный недавно евроремонт и не желание проделывать лишние дырки в стенах для прокладки кабеля; стальная арматура в стенах и перекрытиях монолитных строений, препятствующая проникновению радиоволн и многое другое.

Если вы попали в такую ситуацию, то ваш выбор – . В данном случае роль компьютерной локальной сети будет выполнять обычная электропроводка дома. Наиболее распространенной технологией, обеспечивающей вязь между 220-вольтовой розеткой и портом Ethernet, является стандарт HomePlugAV.

Предоставление доступа Интернет по электросети возможно благодаря развитию технологии PLC (Power Line Communication – передача данных по электросети). PLC по своим возможностям ничем не отличается от других технологий, только не требует специального кабеля или беспроводного канала с выделенной частой. Данные передаются по домашней электросети.

Для создания такой сети потребуется два адаптера: один вставляется в розетку и коммутируется витой парой с компьютером или роутером, предоставляющим доступ в Интернет. Для обеспечения других компьютеров Интернетом через розетку необходимо подключить дополнительной HomePlugAV адаптер в той же самой элетросети.

Принцип работы таких адаптеров достаточно прост. Как известно, ток по проводам домашней электросети передается с частотой 50 Гц. Адаптеры же преобразовывают компьютерные данные в электрический сигнал с более высокой частотой (2 — 32 МГц) и накладывают его на переменный ток электросети. На приемной стороне происходит обратное преобразование.

типы HomePlugAV адаптеров

1. С наличием порта Ethernet . При этом передача данных между компьютером и адаптером осуществляется с помощью обычной витой пары.

2. С наличием WLAN-модуля . Связь с компьютером устанавливается по беспроводной сети. Кроме того, такие адаптеры, как правило, дополнительно комплектуются портом Ethernet.

3. С наличием разъема для подключения спутниковой антенны . К данному типу адаптеров можно отнести самые последние и новые модели, которые используют домашнюю электросеть для передачи сигнала от спутниковой антенны на компьютер или ТВ-ресивер.

Преимущества технологии “интернет через розетку”
  • Отсутствие дополнительных проводов. Нет необходимости прокладывать сетевые кабеля, достаточно вставить адаптер в розетку соответствующего помещения.
  • Большой диапазон действия. Так как в современных квартирах и домах розетки присутствуют в каждой комнате, то и Интернет доступен в любом уголке квартиры. Чего нельзя сказать о сети Wi-Fi: сигнал уже слабеет при прохождении через две стены. Если дом 2-х этажный, то без ретранслятора сигнала не обойтись.
  • Возможность быстрого расширения. Достаточно приобрести дополнительный адаптер.

недостатки технологии “интернет через розетку”
  • HomePlugAV адаптеры могут служить источником помех для радиоприборов и коротковолновых радиопередатчиков. Причина заключается в том, что адаптеры преобразуют компьютерные данные в сигнал диапазона коротких волн и передают их вместе с электрическим сигналом электросети. Т.к. электропроводка, в отличие от коаксиальной проводки, не экранирована, она, подобно передающей антенне, излучает радиосигнал коротковолнового диапазона. Многие производители оснащают свои адаптеры специальными фильтрами дабы исключить радиопомехи.
  • Помехи в канал передачи данных могут вносить и другие электроприборы (стиральные машинки, блоки питания компьютеров или ТВ). В результате влияния таких устройств скорость передачи данных по сети очень резко падает.
  • Современные квартиры, как правило, оборудуются трехфазной электролинией, т.е. в квартиру заводится ни одна электросеть, а три. В таком случае для осуществления передачи данных по электросети необходимо в электрощит (на лестничной площадке) установить устройство фазового сопряжения.
безопасность данных в PLC-сетях

Т.к. электросеть не ограничивается одной квартирой и даже одним зданием, то вероятность подключения к вашей сети очень высока. Однако стандарт HomePlugAV обладает не только высокой скоростью передачи данных (около 200 МБит/с), но и высокой надежностью передачи данных (используется алгоритм шифрования AES со 128 битным ключом). А если учесть, что нет повсеместного оснащения цифровых устройств данной технологией (как в случае с Wi-Fi), то можно говорить, что “Интернет через розетку” обладает достаточной безопасностью и надежностью.

перспективы развития технологии

Несмотря на повсеместное развитие беспроводной сети, технология PLC (в частности стандарт HomePlugAV) еще получит свою популярность. Большие расстояния, необходимость высокой пропускной способности, радиопоглощающие препятствия – все это делает “Интернет через розетку” востребованным у пользователей.

У данной технологии есть свои недостатки, как и у любой другой технологии. Но прогресс не стоит на месте, стандарт совершенствуется, растет скорость и помехозащищенность канала.

Кроме всего прочего, распространению PLC-сетей способствует набирающая популярность еще одна технология ближайшего будущего – интеллектуальные домашние сети (“Умный” дом). Никто не будет спорить, что будущее за единым мониторингом и управлением всей бытовой техникой и всеми системами жизнеобеспечения — от лампочки до дверного замка. И технология передачи данных по электросети PLC подходит для этого как нельзя лучше.

Электричество есть практически везде. И хотя традиционные электросети работают на частоте 50 Гц, в то же время, по современным силовым проводам токи могут передаваться и на более высоких частотах. Таким образом, электросети отлично подходят для передачи не только электроэнергии, но и информации. Но это в теории. На практике все гораздо сложнее. Идея использовать электрические сети для передачи данных была выдвинута еще в начале прошлого века, однако только в 90-х она получила практическое воплощение в виде серии продуктов, обеспечивающих полноценную связь по линиям электропитания. Подобные системы связи стали называться PLC (Power Line Communication).

«Мечта» связиста

Итак, выше мы уже сказали, что у электросетей есть два серьезных преимущества, позволяющих рассматривать их как средство передачи данных – повсеместная распространенность и возможность работать на нужной частоте. Но насколько хорошо кабельные линии защищены от искажений? На первый взгляд, потери информации должны быть минимальны, ведь электропровода защищены достаточно толстой изоляционной оболочкой с большим сопротивлением. Однако на деле все далеко не так просто.

Перечислим основные проблемы, с которыми мы можем столкнуться:

  1. Кроме рабочей частоты 50 Гц, в спектре есть еще и высшие гармонические составляющие. Конечно, чем выше порядок гармоники, тем меньше ее мощность. Но сигнал, который мы собираемся передавать по электросети, имеет в десятки раз меньшую мощность, чем мощность тока. Соответственно, гармоники частоты 50 Гц могут иметь сопоставимую с телекоммуникационным сигналом мощность и поэтому служить источником помех.
  2. Многие электроприборы являются мощным генератором помех в диапазоне единиц - десятков кГц.
  3. Линия электропередачи «впитывает» в себя все наводки, например, от находящейся поблизости радиостанции.
  4. Вне зависимости от технического совершенства используемого оборудования дальность связи все равно ограничивается границами района, обслуживаемого одной питающей подстанцией.
  5. Топология электросетей изначально не была рассчитана на то, чтобы по ним передавали информацию. Поэтому сигнал порой может идти по неоптимальному маршруту. В этом случае могут возникать странные ситуации, когда для передачи информации в соседнюю комнату необходимо более «дальнобойное» оборудование, зато в здание неподалеку сигнал передается без всяких проблем.

    Изменять топологию сети, пусть даже и частично, только ради оптимизации передачи телекоммуникационного сигнала нецелесообразно. Дешевле и проще проложить отдельную линию связи.

Фильтры и цифра

Передачу данных по электросети, как правило, ограничивают пределами одного офиса или одного здания. По сути, это аналог локальной компьютерной сети, только для передачи сигнала используется другая технология. А для обмена данными между различными ЛКС, которые расположены в разных зданиях, используют другие системы связи.

Если вы не хотите, чтобы передаваемые данные утекали из офиса, то обойтись без внесения изменений в сеть электропитания вам не удастся. На кабель, по которому в офис подается ток, устанавливается фильтр, подавляющий телекоммуникационные сигналы. Точно такие же фильтры устанавливаются и на проводку внутри офиса, например, если требуется исключить возможность утечки информации из определенной комнаты.

Для передачи информации по электросетям сейчас используются исключительно цифровые системы.

Через годы и расстояния

Первые эксперименты по передаче данных по электросетям проводились в США в начале прошлого века. Сначала была организована телеграфная связь в сетях постоянного тока, а затем - и в сетях переменного тока.

Позже, уже в 50-х годах, для организации диспетчерской связи по линиям электропередач стали применять аналоговые системы многоканальной электросвязи. Они работают в частотном диапазоне от 1 МГц и выше, из которого исключены отдельные полосы, зарезервированные для других устройств. Для передачи телеметрической и управляющей информации использовались модемы.

В наше время диспетчерская связь по линиям электропередач осуществляется с использованием цифровых систем, работающих в том же диапазоне частот. По сути, такая система представляет собой модем для передачи цифрового сигнала, который затем мультиплексируется с временным разделением каналов для передачи телеметрической, голосовой и управляющей информации.

Однако такая система имеет малую пропускную способность, что вкупе с низким качеством связи стало причиной того, что связь по ЛЭП используется только для собственных потребностей энергетиков. Для организации магистральной связи более целесообразным оказалось использование отдельных ВОЛС, подвешенных к опорам ЛЭП.

Зато технологии передачи информации по электросетям на близкие расстояния оказались более подходящими для коммерческого использования. В 1975 году британская компания Pico Electronics разработала технологию X10, предназначенную для передачи управляющей информации. Согласно ей информация передается с помощью цифрового сигнала на частоте 120 кГц, длительность передачи одного бита - 1 мс. Однако передается он только в момент прохождения синусоиды 50 Гц через ноль, а это существенно ограничивает скорость передачи. В одном пакете находится 12 бит информации, из которых по 4 бита зарезервировано на код дома, код модуля и код команды. При этом «дом» необязательно означает одно отдельно стоящее здание, просто в пределах одного «дома» передаются широковещательные команды. Стандарт X10 до сих пор применяется для управления несложными бытовыми приборами, такими как светильники, вентиляторы, рольставни и т.п.

HomePlug Powerline и UPA

Впервые о возможности передавать информацию по линиям электропитания неспециалисты узнали лишь в 2000 году. Тогда в СМИ широко освещалось появление HomePlug Powerline – организации, объединившей крупных производителей телеком- и электротехнического оборудования с целью разработать единый для всех игроков рынка стандарт передачи информации. В то время беспроводные технологии передачи данных казались дорогостоящей игрушкой, которая слишком дорога для широкого применения. Поэтому PLC-системы представлялись как некоторое средство от монополизма лидеров телекоммуникационного рынка, установивших явно завышенные цены на доступ к Сети.

В 2001 году HomePlug Powerline разработала первый вариант стандарта - HomePlug 1.0. В основе лежит принцип передачи сигнала на 84 поднесущих в частотном диапазоне 4–21 МГц. Аппаратура производит непрерывный мониторинг линии и определяет, на каких частотах в данный момент времени уровень затуханий ниже допустимого предела, а также нет помех. Соответственно, именно эти частоты и используются для передачи данных. Максимальная скорость составляла 14 Мбит/с, тогда как по Wi-Fi в то время скорость передачи данных не превышала 11 Мбит/с. Затем был разработан стандарт HomePlug 1.0 Turbo, в котором частотный диапазон был расширен до 1,8-30 МГц, а количество поднесущих частот было увеличено до 1155. Это позволило повысить максимальную скорость передачи до 85 Мбит/с. В 2005 г. был разработан стандарт HomePlug AV, который был приспособлен под передачу HD аудио-видео данных.

Параллельно с альянсом HomePlug Powerline в 2004-2010 гг. вела деятельность ассоциация Universal Powerline Association. В 2006 году она выпустила стандарт UPA Digital Home Specification v1.0. По своим техническим характеристикам оборудование совместимое с UPA мало чем отличалось от оборудования HomePlug, но UPA всегда была на шаг позади своего конкурента и внедряла новую разработку с некоторой задержкой, что, скорее всего, и стало основной причиной закрытия этого проекта.

Тесный рынок

Закрытие UPA показало, что рынок PLC настолько тесен, что даже двум организациям там не выжить. Тогда Wi-Fi уже превратился из дорогостоящей игрушки в серьезного конкурента HomePlug. В 2009 году принят стандарт IEEE 802.11n, согласно которому максимальная скорость передачи информации составляла 300 Мбит/с, при этом дальность связи достигала нескольких сотен метров. Дальность связи для оборудования HomePlug AV не превышала 300 метров. Ведущий производитель телеком-оборудования Zyxel опубликовал на своем сайте о результатах проведенного в его лаборатории тестирования модема HomePlug AV на бухте кабеля длиной 300 м: средняя скорость передачи информации составила 40 Мбит/с.

Единственный серьезный плюс HomePlug AV по сравнению с технологией Wi-Fi - возможность связи через стены или межэтажные перекрытия, сквозь которые не проходят волны с частотами 2,4 и 5 ГГц. Но, опять-таки, на пути связи с другим этажом может встать неподходящая топология проводки.

Все это, вместе с быстрым развитием 4G сетей, стало причиной того, что PLC так и осталось «нишевым» решением.

Однако это совершенно не означает, что идея передавать информацию по сетям электропитания не имеет будущего. На самом деле в скором времени PLC ожидает новый подъем, но уже в другом - «умном» качестве.

Концепция Smart Grid

Организация обмена электричеством между производителем и потребителем становится возможной при использовании концепции Smart Grid (англ. – «умная энергосистема»). В ее основе лежит сбор информации в реальном времени о производстве и потреблении электроэнергии потребителями и динамическом ее распределении в зависимости от текущих нужд каждого потребителя.

Пока Smart Grid находится на начальной ступени своего развития и внедряется в передовых странах (США и некоторых странах Европы). В соответствии с концепцией потребитель при пиковых нагрузках не может заряжать электромобиль, включать бытовую технику, которую можно использовать и в другое время. За это он платит за электроэнергию по льготному тарифу.

Для Smart Grid был разработан стандарт HomePlug Green PHY 1.1., который при сравнительно низкой скорости передачи данных - 10 Мбит/с - отличается компактностью, экономичностью и дешевизной необходимого оборудования. Также за счет снижения скорости была увеличена надежность системы при сохранении количества поднесущих частот равного 1155.

Бытовая техника, которую потребитель не имеет права включать при пиковой нагрузке энергосети, оснащена датчиками энергопотребления и адаптерами HomePlug Green PHY. Технология HomePlug Green PHY позволяет организовать связь внутри квартиры или дома. Затем сигнал проходит через обычные проводные или беспроводные средства связи, шлюз между HomePlug Green PHY и внешней телекоммуникационной сетью конструктивно объединен со счетчиком электроэнергии. Технология HomePlug Green PHY избавляет от необходимости прокладывать кабель внутри дома или беспокоиться о том, пройдет ли радиосигнал через толстые стены и межэтажные перекрытия. Внесенные в технологию HomePlug улучшения позволили улучшить надежность связи при сохранении достаточной скорости.

На страницах нашего журнала не раз рассматривались устройства для передачи данных по силовым сетям. Несмотря на не слишком широкое распространение таких устройств, технологии продолжают развиваться, и мы не можем обойти вниманием новые решения, поднимающие планку максимальной теоретической скорости передачи данных по электропроводке до 500 Мбит/с. Ранее мы тестировали устройства, в которых используется стандарт HomePlug AV, подразумевающий передачу данных с теоретической скоростью 200 Мбит/с. Напомним, что эта технология способна превратить стандартную электропроводку здания в настоящую компьютерную сеть без каких-либо побочных эффектов и последствий для бытовых электроприборов, питающихся от данной электросети. В настоящей статье речь пойдет о новом устройстве компании TP-LINK - TL-PA551, основанном на одной из последних спецификаций HomePlug AV2. Для того чтобы протестировать новые модели, мы использовали два устройства TP-LINK TL-PA551, которые также могут поставляться единым комплектом под названием TL-PA551KIT. Но прежде чем описывать новую модель и рассматривать результаты тестирования, расскажем о нововведениях в последней спецификации стандарта HomePlug AV2, а также о самом стандарте, который теперь имеет официальное название IEEE 1901.

Сети PowerLine

По сути, стандарт HomePlug является разновидностью технологии PLC (Power Line Communication), которая использует линии электропередач для передачи данных или голосовой информации. Впервые такие системы стали применять более века назад, как только появились сами линии электропередач. В то время по проводам между подстанциями передавали телеграфный сигнал, а уже затем, в связи с ростом числа высоковольтных линий электропередач, количества подстанций и других элементов электрической проводки, начали внедрять системы высокочастотной связи для телефонии и телеметрии. Данные в этом случае передавались путем наложения аналогового сигнала с другой частотой, отличной от частоты переменного тока. Стоит отметить, что долгое время существовала проблема затухания сигнала, вызванного помехами на линии, так как любая электропроводка характеризуется высоким уровнем шумов и быстрым затуханием высокочастотного сигнала. Решить проблему затухания сигнала позволило применение алгоритмов широкополосной модуляции сигнала, что, в свою очередь, повысило стоимость такого оборудования, поэтому долгое время данные технологии не получали широкого распространения. Сейчас технология PLC используется для передачи информационно­технических данных в энергосистемах и на железных дорогах.

Принцип работы технологии PLC для компьютерных сетей схож с работой DSL-оборудования. Главным преимуществом этих устройств является возможность работы с уже существующей проводной инфраструктурой и отсутствие необходимости в прокладке дополнительных кабелей. В обоих случаях различные типы данных физически передаются по одному и тому же проводу, но на разных частотах, а оборудование, подключенное к данному проводу, фильтрует полученные сигналы в зависимости от заданной частоты и далее работает только с этим сигналом. Сети HomePlug в основном относятся к стандартам домашних сетей типа Wi-Fi и HomePNA. При этом качество связи по сравнению с беспроводными технологиями Wi-Fi несколько выше. Однако для качественной связи по технологии PLC необходимо надежное проводное соединение, а именно наличие хорошего медного кабеля без всевозможных скруток и переходов от одного типа кабеля к другому (например, с алюминия на медь). Увы, качество прокладки электрического кабеля в большинстве российских домов является притчей во языцех, во многих квартирах в качестве проводки используются алюминиевые провода.

Нельзя обойти вниманием и особенность работы этой технологии при наличии нескольких адаптеров, работающих в одной электросети. В первых устройствах на базе этого стандарта пропускная способность канала делилась между участниками сети поровну, что значительно уменьшало скорость передачи данных каждого клиента, когда в такой сети находятся не два, а пять или десять активных адаптеров. Качество сигнала может варьироваться в зависимости от количества активных бытовых приборов, подключенных к электросети. Для устройств сети PowerLine критичным также является подключение прожорливых приборов типа обогревателя или сварочного аппарата. Из­за особенностей прохождения высокочастотного сигнала сеть PowerLine не будет работать, если один из адаптеров подключен через сетевой фильтр, источник бесперебойного питания или стабилизатор.

Рассматриваемые в этой статье устройства TP-LINK TL-PA551 поддерживают спецификации HomePlug AV2, официально утвержденные как стандарт под названием IEEE 1901 в конце 2010 года. Несмотря на то что стандарту уже более двух лет, новые устройства на его базе стали предлагать относительно недавно, поскольку чипы, поддерживающие данный стандарт, появились на рынке не сразу. Вообще, раньше сети HomePlug имели несколько различных спецификаций, каждая из которых направлена на решение той или иной задачи. К примеру, HomePlug и его последующие модификации - HomePlug AV и HomePlug AV2 - ориентированы на использование в домашних условиях или небольших офисах и предназначены для передачи данных между различными сетевыми устройствами. Решения HomePlug Green PHY хотя и совместимы с основным стандартом HomePlug AV, но нацелены на другой способ применения, так как не предполагают высокой скорости передачи данных и ориентированы на создание сетей Smart Grid в рамках концепции «умного дома» (Smart Home). Такие устройства предназначены для управления и мониторинга состояния электротехнического оборудования, учета энергоресурсов, создания систем автоматизации и многого другого, что не требует скоростной передачи данных, но при этом использует цифровые сигналы для связи отдельных элементов. Еще одно ответвление HomePlug под названием HomePlug Access BPL создано в первую очередь для провайдеров последней мили, так как предполагает передачу данных по высоковольтным сетям от магистральных провайдеров к конечным пользователям или офисам. Устройства HomePlug, исключая первые спецификации HomePlug 1.0, совместимы друг с другом и, скорее всего, будут работать в единой сети. Но вернемся к новому стандарту HomePlug AV2.

Исходя из спецификации этого стандарта, на физическом уровне скорость передачи данных между адаптерами HomePlug AV2 может достигать 500 Мбит/с. Однако на MAC-уровне скорость существенно ниже - порядка 200-250 Мбит/с. Это объясняется как применением шифрования, так и достаточно большим количеством вторичной служебной информации. Для передачи данных используются частоты в пределах от 2 до 100 МГц. Тут стоит отметить тот факт, что стандарт IEEE 1901 подразумевает две реализации на физическом уровне - IEEE 1901 FFT и IEEE 1901 Wavelet. Обе они применяют для передачи данных частоты от 2 до 30 МГц, но есть и различия. Первая реализация является производной от спецификаций технологий HomePlug AV и используется в устройствах на базе HomePlug. Она предполагает применение OFDM-модуляции и опциональное использование двух дополнительных диапазонов частот - 30-50 и 50-68 МГц. Вторая реализация - IEEE 1901 Wavelet - базируется на технологиях HD-PLC, активно продвигается такими компаниями, как Panasonic, и ориентирована в большей степени на сети Smart Grid и операторов последней мили. IEEE 1901 Wavelet подразумевает использование для коррекции ошибок кода Рида - Соломона, а в качестве опциональной возможности - кода LDPC. В конечном счете разработка стандарта IEEE 1901 привела к тому, что технологии и спецификации HomePlug Access BPL были перенесены в реализацию IEEE 1901 Wavelet, а HomePlug Green PHY осталась в составе стандарта IEEE 1901 FFT и спецификаций HomePlug AV/AV2.

Соединение между клиентами сетей HomePlug AV2 шифруется с помощью 128-битного ключа по алгоритму AES. Как и большинство современных технологий передачи данных, HomePlug AV2 позволяет применять правила QoS (Quality of Service) для приоритезации передаваемого трафика, тем самым улучшая качество связи для всех сервисов. Устройства, использующие спецификацию HomePlug AV2, предусматривают преобразование данных, поступающих через порт Ethernet, в высокочастотный сигнал по распространенной схеме цифровой модуляции OFDM с применением технологий MIMO. Добавление MIMO в HomePlug AV2 позволило получить прирост скорости при передаче данных в несколько потоков. Стоит отметить, что мультиплексирование с ортогональным частотным разделением каналов (OFDM) применяется в беспроводных сетях Wi-Fi, WiMAX и LTE, а также в проводных кабельных телевизионных сетях и сетях ADSL/VDSL. Основой этого алгоритма является разделение доступного спектра частот на несколько узких зон, по которым передаются сигналы с относительно низкой скоростью, но при этом в сумме удается получить более высокую скорость. Каждая из частотных зон спектра может модулироваться для передачи данных различными способами с разным частотным диапазоном. Поскольку данные кодируются в высокочастотном диапазоне, основными помехами для их передачи является обрезание или гашение полезного сигнала в сетевых фильтрах, преобразователях и стабилизаторах напряжения. Нельзя также не упомянуть о наличии шумов и помех в линии, создаваемых бытовой техникой, лампами и другими электроприборами. В результате сигнал может сильно искажаться и ослабляться, что приводит к снижению скорости передачи данных. Для борьбы с шумами и искажениями сигнала применяются алгоритмы канальной адаптации и коррекции ошибок (Forward Error Correction, FEC) на базе параллельного каскадного блокового систематического кода, способного исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Поскольку амплитуда передаваемого сигнала не превышает нескольких вольт, обычные электроприборы не реагируют на включение подобных адаптеров в розетку, так как их влияние сравнимо с естественными помехами и колебаниями напряжения в домашней электрической сети.

Дизайн и технические характеристики TP-LINK TL-PA551

Адаптер TP-LINK TL-PA551 поставляется в небольшой картонной коробке, оформленной в типичном для SOHO-устройств TP-LINK светло-зеленом цвете. На упаковке приведены изображения устройства, его название, технические характеристики и особенности на разных языках. Кроме того, на тыльной стороне коробки имеется сводная таблица устройств TP-LINK PowerLine, в которой они сравниваются между собой по функциональным возможностям. Отметим, что среди всех устройств серии PowerLine модель TP-LINK TL-PA551 является наиболее функциональной и может считаться флагманом этой линейки. Помимо адаптера TP-LINK TL-PA551 в коробке находятся кабель категории UTP длиной 3 м, miniCD-диск с программным обеспечением, небольшая инструкция по подключению на английском языке и гарантийный талон.

Корпус устройства выполнен в стиле «иньян». Нижняя часть адаптера изготовлена из темного матового пластика, а передняя лицевая - из белого с глянцевым покрытием. Между нижней и верхней частями происходит плавный переход от одного цвета к другому за счет скругления верхнего края. На передней панели, помимо вытесненных логотипа компании и значения максимальной скорости передачи данных, находятся три индикатора активности устройства. Левый индикатор показывает наличие питания в розетке и текущий статус работы. Средний индикатор (может иметь разный цвет в зависимости от ситуации) отображает текущее состояние сети PowerLine, а нижний сигнализирует о наличии подключения к локальной сети или сетевому адаптеру.

Внизу на боку устройства находятся порт RJ-45 для подключения к локальной сети и специальная кнопка для быстрого создания зашифрованной сети между двумя адаптерами. Остальные боковые стороны адаптера имеют небольшие прорези, которые выполняют функцию решетки пассивной вентиляции, поскольку при работе адаптер заметно греется. Тыльная часть устройства плавно переходит в европейскую вилку стандарта CEE 7/4. Под ней размещена информационная наклейка, на которой указаны серийный номер, MAC-адрес, модель и название устройства. Помимо этого здесь приведен заводской пароль для работы устройства в сети PowerLine. Над вилкой, на лицевой стороне устройства, расположена розетка этого же типа, что позволяет устанавливать адаптер в разрыв между подключенным оборудованием и электрической сетью. Размеры TP-Link TL-PA551 составляют 126×64×42 мм, а весит он 240 г.

Внутри адаптера установлены две небольшие печатные платы, соединенные между собой несколькими контактными группами. На основной плате находится чип Atheros AR7400-AC2C, относящийся к четвертому поколению и обеспечивающий поддержку PowerLine-части устройства. Чип на аппаратном уровне поддерживает модуляции OFDM 4096/1024/256/64/16/8 QAM, QPSK, BPSK и ROBO. В качестве вспомогательного чипа используется микросхема Atheros AR1500. Поскольку новый стандарт предполагает передачу данных на скорости 500 Мбит/с, в этом адаптере установлен гигабитный сетевой контроллер на базе микросхемы Atheros AR8021. Оперативная память представлена микросхемой Zentel A3S28D40FTP объемом 16 Мбайт. Помимо этих основных элементов, на платах расположены вспомогательные фильтры и другие компоненты.

Настройка адаптера

Модели TP-Link TL-PA551, как и все устройства PowerLine, относятся к классу PnP, так как подключаются к компьютеру через локальную сеть и не требуют какойлибо специальной настройки перед работой. Если сеть PowerLine изолирована от внешнего мира, то в дополнительные настройки адаптеров можно и не заходить. Однако для более эффективной работы с ними можно установить специализированную утилиту управления. Программа TP-LINK Powerline Utility (рис. 1), которая поставляется на диске вместе с адаптерами, как раз служит для настройки, диагностики и управления сетью из нескольких устройств стандарта HomePlug AV2. Для ее работы необходимо инсталлировать на компьютер библиотеки WinPCAP и саму утилиту управления, процесс установки которых полностью прозрачен для пользователя. Нельзя не отметить тот факт, что на текущий момент библиотека WinPCAP, поставляемая в комплекте с утилитой, не предполагает установку на операционную систему Windows 8 - поддерживается только ОС Windows XP/Vista/7.

Рис. 1. Программа управления. Вкладка Status

Утилита управления позволяет работать сразу с несколькими адаптерами сети PowerLine. Для того чтобы управлять адаптерами, необходимо ввести пароль каждого из установленных адаптеров и таким образом пройти аутентификацию. Отметим, что по сравнению с элементарными паролями, которые устанавливаются по умолчанию в домашних роутерах, в PowerLine-адаптерах используются длинные цифробуквенные пароли DAK (Device Access Key), уникальные для каждого из устройств. Благодаря этому осуществляется надежная защита сети, ведь такие адаптеры могут быть установлены в офисных зданиях, где применяется единая проводка и невозможно отследить наличие еще одного устройства PowerLine.

В основном окне (см. рис. 1) отображаются MAC-адрес локального адаптера, имя текущей сети, к которой принадлежит адаптер, пароль адаптера, а также текущая версия прошивки устройства. Название используемой сети можно изменить в этом же окне, через которое компьютер выходит в сеть PowerLine. Программой поддерживается создание приватной сети (private), поскольку по умолчанию все адаптеры настроены на работу в общей небезопасной сети и другие устройства будут видеть только что подключенный адаптер. Для перехода от общей сети к приватной необходимо просто сменить название сети с HomePlugAV на любое другое. После этого адаптер автоматически выходит из общей сети и не будет доступен другим участникам сети PowerLine.

Хотя существует функция смены сети для всех видимых устройств, пароли при этом всё равно придется задавать вручную для каждого адаптера. Также отметим, что в безопасной сети каждый адаптер должен иметь один и тот же пароль.

В данном окне (рис. 2) управляющая программа пытается соединиться с другими устройствами сети, для чего начинает периодически сканировать сеть PowerLine на наличие в пределах досягаемости других устройств HomePlug AV. Можно отключить автоматическое сканирование сети и осуществлять поиск новых устройств вручную с помощью кнопки Rescan. Затем, если известен пароль на найденное устройство, ему можно присвоить любое имя, чтобы, например, ориентироваться, где оно установлено, с помощью опции modify. Отметим, что при вводе пароля необходимо вводить дефисы между символами, как это указано на этикетке. Для найденных адаптеров отображаются их MAC-адрес, текущая скорость соединения, качество принимаемого сигнала и пароль устройства. Для добавления адаптеров в безопасную сеть необходимо поочередно подключать их к компьютеру и менять им название сети.

Рис. 2. Программа управления. Вкладка Network

Как уже упоминалось, устройства TP-LINK TL-PA551 поддерживают функцию приоритезации трафика в зависимости от используемых приложений. Во вкладке утилиты управления QoS пользователь может задать один из четырех пресетов поведения этой функции (рис. 3). Первая опция, которая выбрана по умолчанию, - Internet - оптимизирует правила QoS для работы в Интернете. Вторая опция - Online Gaming - предназначена для онлайновых игр, для которых критична задержка при обмене с сервером. Третья опция - Audio/Video - предполагает выделение приоритета для потокового видео и звука, то есть для просмотра онлайн-телевещания. Название последней опции - VoIP - говорит само за себя - это настройка правил QoS, когда приоритет отдается IP-телефонии. Все изменения наступают примерно через минуту после подтверждения выбора. Там же можно вручную указать дополнительные опции для VLAN, однако документация по настройке данных параметров в комплекте с устройством не идет.

Рис. 3. Программа управления. Вкладка Advanced

Последняя вкладка - System - отображает диагностическую и общую информацию об адаптере и позволяет загружать новую версию прошивки на устройство (устройства) сети. В целом интерфейс программы прост и понятен.

Методика тестирования

Для тестирования адаптеров TP-LINK TL-PA551 мы использовали электропроводку нашего офиса, которая идет по кабель-каналам, а также несколько удлинителей. В качестве двух устройств, между которыми происходил обмен данными, были задействованы два компьютера с гигабитными сетевыми адаптерами Intel 10/100/1000 Pro. С помощью двух адаптеров эти два стационарных ПК соединялись между собой по проводам электросети здания в нескольких точках.

Для тестирования применялся тестовый пакет Ixia Chariot, который позволяет измерять сетевой трафик между многочисленными точками с помощью специальных утилит, устанавливаемых на компьютеры-клиенты. Для измерения скорости использовались три пресета, которые отправляли трафик в противоположных направлениях между клиентами. Графики скорости и общей пропускной способности сети PowerLine приведены ниже, а сейчас рассмотрим точки замера, при которых запускался тестовый пакет.

Точки замера скорости были разделены на две группы: офисная сеть с подключенными работающими устройствами и отдельная электрическая сеть, состоящая из удлинителей. Для обеих групп первой точкой замера являлись две отдельно стоящие розетки с медной проводкой между ними без подключенных в них других бытовых приборов.

Для первой группы замеров, когда использовалась офисная сеть, вторая точка предполагала разнесение двух адаптеров на расстояние 3,5 м, третья точка замера - 6,3 м, четвертая точка - 8,8 м. В пятой точке замера расстояние между адаптерами составляло 13,5, а в шестой - чуть больше 16 м. Во время теста этой группы в электрическую сеть было включено около десяти компьютеров, один лазерный принтер, работающий электрочайник и другие приборы.

Для второй группы применялись типовые удлинители с медной проводкой. Во второй точке замера расстояние между адаптерами составляло 5 м, потом был подсоединен еще один 5-метровый удлинитель для третьей точки замера. Четвертая точка замера отстояла на 13 м, а пятая - на 18 м. В последней, шестой точке замера расстояние составляло 23 м.

Отметим, что эти адаптеры также были протестированы в обычной двухкомнатной квартире общей площадью 55 м2. Результаты в данном случае были незначительно выше, чем при стрессовом тестировании в офисе, поэтому мы не будем приводить график, а лишь отметим, что в домашних условиях скорость передачи данных в среднем составляла более 120 Мбит/с.

На рис. 4 показаны два графика: синий график относится ко второй группе замеров, а красный - к замерам скорости при использовании офисной сети. Как видите, скорость в первой точке на обоих графиках практически одинакова и является максимальной при применении двух таких адаптеров. Напомним, что она была получена при обмене трафиком между двумя адаптерами TP-LINK TL-PA551, когда они подключены в соседние розетки и других работающих электроприборов рядом с ними не установлено, что в реальности исключено. Усредненная максимальная скорость передачи данных составляет практически половину от максимальной теоретической скорости. На графике явно видно резкое падение скорости с увеличением расстояния между адаптерами всего на 5 м. В этом случае скорость уменьшилась в среднем на 60 и 80 Мбит/с соответственно. Причем падение скорости передачи данных при использовании офисной сети с подключенными и активными приборами выражено сильнее, чем в условиях применения «чистой» сети, без подключенных приборов. Более того, разница в скорости между двумя группами замеров отчетливо видна при увеличении расстояния между адаптерами на 10 и более метров. Исходя из спецификации стандарта HomePlug AV, это является высоким показателем, поскольку теоретическая скорость с включенным шифрованием в этом стандарте может достигать 500 Мбит/с, так как доля служебного трафика составляет более 50%.

Рис. 4. Падение скорости с увеличением расстояния

Включение адаптеров через сетевые фильтры и источники бесперебойного питания даже с наименьшим расстоянием между ними приводило к потере сигнала между адаптерами. Подключение адаптеров к старому, неоднократно переделанному удлинителю значительно уменьшало скорость передачи данных, поэтому мы не рекомендуем использовать старые удлинители для такого типа устройств. Необходимо отметить, что то, какой режим QoS был выбран, практически не сказывалось на скорости передачи данных на малых расстояниях. При увеличении расстояния между адаптерами до 15 м выбор опции приоритезации трафика VoIP увеличивал скорость примерно на 10-25 Мбит/с.

Выводы

Исходя из результатов тестирования, можно отметить, что устройства TP-LINK TL-PA551 являются весьма интересным решением для пользователей. Скорость передачи данных между двумя точками сети может достигать 150 Мбит/с, что выше показателей обычной локальной сети Ethernet 10/100 Base-TX и реальной скорости передачи данных по беспроводному соединению стандарта 802.11n. Рассмотренные устройства обеспечивают простое и удобное подключение компьютеров в любой точке дома или небольшого офиса к локальной сети, при этом позволяя избежать прокладки дополнительных сетевых кабелей. Важной особенностью является меньшее количество возможных помех в PowerLine-сети по сравнению с беспроводной, которая критична к наличию других беспроводных устройств в зоне работы. Ориентировочная розничная цена адаптера TP-LINK TL-PA551 составляет 1700 руб.

Зачем это нужно? В моем случае - старая проблема. В комнату дочки во время ремонта я никакого кабеля не затянул. По wi-fi нормально не получается - на внешней USB карточке с доп антеннами получается в среднем 350 - 600 килобайт в секунду, и при этом скорость скачет. Выхода два - долбить заново стены и тянуть кабель или воспользоваться героем моего обзора.

Кратко о принципах работы. Смысл устройства - по обычной сети 220 вольт модулированным сигналом с частотами от 2 Мгц до 48 Мгц передавать информацию.
На входе стоит трансформатор и фильтр, отделяющий высокочастотный сигнал от низкочастотного плюс Ethernet порт. Для обычного компьютера это представляется как сегмент сети на витой паре. Единственное НО - работает в пределах одной фазы. Если у вас часть квартиры на одной фазе, а часть на другой - прийдется устанавливать специальный мост между фазами.

Коробка затянута термоусадочной пленкой

Сама коробка в стиле Эко - некрашеный крафт-картон

Упаковка подразумевает, что при транспортировке все будет нормально.

Весь комплект

МАС адрес устройства, потребляемый ток

Инструкция

Спецификации
Материал: ABC пластик
Скорость передачи 200Mbps
Режим энергосбережения
Питание AC 100-240V, 50/60Hz
Работает до 300 метров
Поддержка стандартов IEEE802.3, IEEE802.3u и HomePlug AV
Встроенная поддержка QoS
Встроенное 128-bit AES шифрование
RJ45 порт
Индикатор питания, физического соединения и Ethernet соединения

Тестирование
Выполнен из гладкого глянцевого белого пластика. Без заусенцев, щелей и перекосов. Корпус собран на клею, разобрать не удалось.
Сетевые кабели длиной около метра, колпачки литые.
Диск содержит инструкцию в файле формата PDF и утилиты, которые позволяют сконфигурировать адаптеры, протестировать, сделать приватную сеть, установить пароль.
Для организации приватной сети можно использовать кнопку на устройстве - нажимаем 3 секунды на спариваемых устройствах и они конфигурируются в частную сеть. Eсли этого не сделать - в вашей проводной сети может появится например сосед с 5 этажа, сидящий на той же фазе и с похожими устройствами.

При подключении устройств они приблизительно за 2 секунды находят друг друга и соединяются. Светодиоды отвечающие за физическое соединение и ethernet моргают при передаче данных. Никаких настроек не делал - включил и получил подключение к роутеру.
Собственно тестирование.

Качаем торрент качалкой файл, более 200 сидов. Сперва на Wi-Fi карте, потом на наших подопытных

Это средняя скорость. В пике доходило до 700 килобайт, но в целом болталось около 300 килобайт

Скорость ощутимо выросла, правда не максимальна, мой провайдер позволяет качать со скоростью 4 мегабайта.

Достоинства

Хороший внешний вид
Качественная упаковка и сборка
Удобно в использовании
Не требует настройки

Недостатки
Цена

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +81 Добавить в избранное Обзор понравился +23 +88
Понравилось? Лайкни нас на Facebook