Самый многоядерный процессор intel. Multi-Core vs. Many-Core, или Зачем нужны многоядерные микропроцессоры? Операционные системы и топология

Что такое ядро процессора

В центре современного центрального микропроцессора (CPU – сокр. от англ. central processing unit – центральное вычислительное устройство) находится ядро (core) – кристалл кремния площадью примерно один квадратный сантиметр, на котором посредством микроскопических логических элементов реализована принципиальная схема процессора, так называемая архитектура (chip architecture).

Ядро связано с остальной частью чипа (называемой «упаковка», CPU Package) по технологии «флип-чип» (flip-chip, flip-chip bonding – перевернутое ядро, крепление методом перевернутого кристалла). Эта технология получила такое название потому, что обращенная наружу – видимая – часть ядра на самом деле является его «дном», – чтобы обеспечить прямой контакт с радиатором кулера для лучшей теплоотдачи. С обратной (невидимой) стороны находится сам «интерфейс» – соединение кристалла и упаковки. Соединение ядра процессора с упаковкой выполнено с помощью столбиковых выводов (Solder Bumps).

Ядро расположено на текстолитовой основе, по которой проходят контактные дорожки к «ножкам» (контактным площадкам), залито термическим интерфейсом и закрыто защитной металлической крышкой.

Что такое многоядерный процессор

Многоядерный процессор – это центральный микропроцессор, содержащий 2 и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Для чего нужна многоядерность

Первый (естественно, одноядерный!) микропроцессор Intel 4004 был представлен 15 ноября 1971 г. корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил $300.

Требования к вычислительной мощности центрального микропроцессора постоянно росли и продолжают расти. Но если раньше производителям процессоров приходилось постоянно подстраиваться под текущие насущные (вечно растущие!) запросы пользователей ПК, то теперь чипмейкеры идут с бо-о-о-льшим опережением!

Долгое время повышение производительности традиционных одноядерных процессоров в основном происходило за счет последовательного увеличения тактовой частоты (около 80% производительности процессора определяла именно тактовая частота) с одновременным увеличением количества транзисторов на одном кристалле. Однако дальнейшее повышение тактовой частоты (при тактовой частоте более 3,8 ГГц чипы попросту перегреваются!) упирается в ряд фундаментальных физических барьеров (поскольку технологический процесс почти вплотную приблизился к размерам атома: сегодня процессоры выпускаются по 45-нм технологии, а размеры атома кремния – приблизительно 0,543 нм):

Во-первых, с уменьшением размеров кристалла и с повышением тактовой частоты возрастает ток утечки транзисторов. Это ведет к повышению потребляемой мощности и увеличению выброса тепла;

Во-вторых, преимущества более высокой тактовой частоты частично сводятся на нет из-за задержек при обращении к памяти, так как время доступа к памяти не соответствует возрастающим тактовым частотам;

В-третьих, для некоторых приложений традиционные последовательные архитектуры становятся неэффективными с возрастанием тактовой частоты из-за так называемого «фон-неймановского узкого места» – ограничения производительности в результате последовательного потока вычислений. При этом возрастают резистивно-емкостные задержки передачи сигналов, что является дополнительным узким местом, связанным с повышением тактовой частоты.

Применение многопроцессорных систем также не получило широкого распространения, так как требует сложных и дорогостоящих многопроцессорных материнских плат. Поэтому было решено добиваться дальнейшего повышения производительности микропроцессоров другими средствами. Самым эффективным направлением была признана концепция многопоточности, зародившаяся в мире суперкомпьютеров, – это одновременная параллельная обработка нескольких потоков команд.

Так в недрах компании Intel родилась Hyper-Threading Technology (HTT) – технология сверхпоточной обработки данных, которая позволяет процессору выполнять в одноядерном процессоре параллельно до четырех программных потоков одновременно. Hyper-threading значительно повышает эффективность выполнения ресурсоемких приложений (например, связанных с аудио- и видеоредактированием, 3D-моделированием), а также работу ОС в многозадачном режиме.

Процессор Pentium 4 с включенным Hyper-threading имеет одно физическое ядро, которое разделено на два логических, поэтому операционная система определяет его, как два разных процессора (вместо одного).

Hyper-threading фактически стала трамплином к созданию процессоров с двумя физическими ядрами на одном кристалле. В 2-ядерном чипе параллельно работают два ядра (два процессора!), которые при меньшей тактовой частоте обеспечивают большую производительность, поскольку параллельно (одновременно!) выполняются два независимых потока инструкций.

Архитектура многоядерных систем

Многоядерные процессоры можно подразделить по наличию поддержки когерентности (общей) кеш-памяти между ядрами. Бывают процессоры с такой поддержкой и без неё.

Способ связи между ядрами: разделяемая шина сеть (Mesh) на каналах точка-точка сеть с коммутатором общая Кеш-память

Способность процессора выполнять одновременно несколько программных потоков называется параллелизмом на уровне потоков (TLP – thread-level parallelism). Необходимость в TLP зависит от конкретной ситуации (в некоторых случаях она просто бесполезна!).

Основные проблемы создания многоядерных процессоров

Каждое ядро процессора должно быть независимым, – с независимым энергопотреблением и управляемой мощностью;

Рынок программного обеспечения должен быть обеспечен программами, способными эффективно разбивать алгоритм ветвления команд на четное (для процессоров с четным количеством ядер) или на нечетное (для процессоров с нечетным количеством ядер) количество потоков;

Преимущества многоядерных процессоров

Возможность распределять работу программ, например, основных задач приложений и фоновых задач операционной системы, по нескольким ядрам;

Увеличение скорости работы программ;

Процессы, требующие интенсивных вычислений, протекают намного быстрее;

Более эффективное использование требовательных к вычислительным ресурсам мультимедийных приложений (например, видеоредакторов);

Снижение энергопотребления;

Работа пользователя ПК становится более комфортной;

Недостатки многоядерных процессоров

Возросшая себестоимость производства многоядерных процессоров (по сравнению с одноядерными) заставляет чипмейкеров увеличивать их стоимость, а это отчасти сдерживает спрос;

Так как с оперативной памятью одновременно работают сразу два и более ядра, необходимо «научить» их работать без конфликтов;

Возросшее энергопотребление требует применения мощных схем питания;

Требуется более мощная система охлаждения;

Количество оптимизированного под многоядерность программного обеспечения ничтожно мало (большинство программ рассчитаны на работу в классическом одноядерном режиме, поэтому они просто не могут задействовать вычислительную мощь дополнительных ядер);

Операционные системы, поддерживающие многоядерные процессоры (например, Windows XP SP2 и выше) используют вычислительные ресурсы дополнительных ядер для собственных системных нужд;

Следует признать, что в настоящее время многоядерные процессоры используются крайне неэффективно. Кроме того, на практике n-ядерные процессоры не производят вычисления в n раз быстрее одноядерных: хотя прирост быстродействия и оказывается значительным, но при этом он во многом зависит от типа приложения. У программ, которые не рассчитаны на работу с многоядерными процессорами, быстродействие увеличивается всего на 5%. А вот оптимизированные под многоядерные процессоры программы работают быстрее уже на 50%.

Гонку за дополнительную производительность на рынке процессоров могут выиграть только те производители, которые на основе текущих технологий производства смогут обеспечить разумный баланс между тактовой частотой и количеством вычислительных ядер. Благодаря переходу на 90- и 65-нм техпроцессы появилась возможность создавать процессоры с большим числом ядер. В немалой степени это было обусловлено и новыми возможностями регулировки тепловыделения, и размерами ядер, именно поэтому сегодня мы наблюдаем появление всё большего числа четырёхядерных процессоров. Но как насчёт программного обеспечения? Насколько хорошо оно масштабируется от одного до двух или четырёх ядер?

В идеальном мире программы, оптимизированные под многопоточность, позволяют операционной системе распределять несколько потоков по доступным вычислительным ядрам, будь то один процессор или несколько, с одним ядром или с несколькими. Добавление новых ядер позволяет получить больший прирост производительности, чем любой прирост тактовой частоты. Это действительно имеет смысл: большее количество рабочих почти всегда справятся с заданием быстрее, чем меньшее количество более быстрых рабочих.

Но имеет ли смысл оснащать процессоры четырьмя или даже большим числом ядер? Хватит ли работы, чтобы нагрузить четыре ядра или большее их количество? Не стоит забывать, что весьма сложно распределить работу между ядрами, чтобы такие физические интерфейсы, как HyperTransport (AMD) или Front Side Bus (Intel), не стали "узким местом". Есть и третий вариант: механизм, который распределяет нагрузку между ядрами, а именно, диспетчер ОС, может тоже стать "узким местом".

Переход AMD с одного на два ядра прошёл практически безупречно, поскольку компания не увеличивала тепловой пакет до экстремального уровня, как это было у процессоров Intel Pentium 4. Поэтому процессоры Athlon 64 X2 были дорогими, но вполне разумными, а линейка Pentium D 800 прославилась своей горячей работой. Но 65-нм процессоры Intel и, в особенности, линейка Core 2 изменили картину. Intel смогла сочетать два процессора Core 2 Duo в одной упаковке, в отличие от AMD, в результате чего мы и получили современные Core 2 Quad. AMD обещает выпустить до конца этого года свои собственные четырёхядерные процессоры Phenom X4.

В нашей статье мы рассмотрим конфигурацию Core 2 Duo на четырёх ядрах, двух ядрах и на одном ядре. И посмотрим, насколько хорошо масштабируется производительность. Стоит ли сегодня переходить на четыре ядра?

Одно ядро

Под термином "одноядерный" скрывается процессор, который обладает одним вычислительным ядром. Сюда подпадают практически все процессоры с зарождения архитектуры 8086 вплоть до Athlon 64 и Intel Pentium 4. Пока техпроцесс производства не стал достаточно тонким, чтобы создавать два вычислительных ядра на одном кристалле, переход на меньший техпроцесс использовался для снижения рабочего напряжения, увеличения тактовых частот или добавления функциональных блоков и кэш-памяти.

Работа одноядерного процессора на высоких тактовых частотах может дать более высокую производительность для одного приложения, но подобный процессор в один момент времени может выполнять только одну программу (поток). Intel реализовала принцип Hyper-Threading, который эмулирует наличие нескольких ядер для операционной системы. Технология HT позволила лучше загрузить длинные конвейеры процессоров Pentium 4 и Pentium D. Конечно, прирост производительности был невелик, но отзывчивость системы оказалась определённо лучше. А в многозадачном окружении это может быть и важнее, поскольку вы сможете выполнять какую-либо работу, пока ваш компьютер работает над определённой задачей.

Поскольку двуядерные процессоры сегодня стоят очень дёшево, мы не рекомендуем брать одноядерные процессоры, если только вы не хотите экономить каждую копейку.


Процессор Core 2 Extreme X6800 на момент выхода был самым быстрым в линейке Intel Core 2, работая на частоте 2,93 ГГц. Сегодня двуядерные процессоры достигли 3,0 ГГц, правда, при более высокой частоте шины FSB1333.

Переход на два процессорных ядра означает в два раза большую вычислительную мощность, но только на приложениях, оптимизированных под многопоточность. Обычно такие приложения включают профессиональные программы, которым нужна высокая вычислительная мощность. Но двуядерный процессор всё равно имеет смысл, даже если вы используете свой компьютер лишь для электронной почты, просмотра интернет-страниц и работы с офисными документами. С одной стороны, современные модели двуядерных процессоров потребляют не особо больше энергии, чем одноядерные модели. С другой стороны, второе вычислительное ядро не только добавляет производительность, но и улучшает отзывчивость системы.

Вы когда-нибудь ждали, пока WinRAR или WinZIP закончат сжатие файлов? На одноядерной машине вы вряд ли сможете быстро переключаться между окнами. Даже воспроизведение DVD может нагружать одно ядро не меньше, чем сложная задача. Двуядерный процессор позволяет легче справляться с одновременным запуском нескольких приложений.

Двуядерные процессоры AMD содержат два полноценных ядра с кэш-памятью, интегрированным контроллером памяти и кросс-коммутатором, который обеспечивает совместный доступ к памяти и к интерфейсу HyperTransport. Intel пошла путём, схожим с первым Pentium D, установив в физический процессор два ядра Pentium 4. Поскольку контроллер памяти является частью чипсета, системную шину приходится использовать и для связи между ядрами, и для доступа к памяти, что накладывает определённые ограничения на производительность. Процессор Core 2 Duo оснащён более совершенными ядрами, которые дают лучшую производительность на такт и лучшее соотношение производительности на ватт. У двух ядер используется общий кэш L2, который позволяет обмениваться данными без использования системной шины.

Процессор Core 2 Quad Q6700 работает на частоте 2,66 ГГц, используя внутри два ядра Core 2 Duo.

Если сегодня существует много причин, чтобы перейти на двуядерные процессоры, то четыре ядра выглядят пока не так убедительно. Одна из причин заключается в ограниченной оптимизации программ под несколько потоков, но существуют и определённые проблемы в архитектуре. Хотя AMD сегодня критикует Intel за упаковку двух двуядерных кристаллов в одном процессоре, считая это не "настоящим" четырёхядерным CPU, подобный подход Intel работает хорошо, поскольку процессоры действительно обеспечивают четырёхядерную производительность. С точки зрения производства легче получить высокий уровень выхода годных кристаллов и выпускать больше продуктов с небольшими ядрами, которые затем можно соединить вместе для нового, более мощного продукта на новом техпроцессе. Что же касается производительности, то есть "узкие места" - два кристалла взаимодействуют друг с другом через системную шину, поэтому весьма сложно управлять несколькими ядрами, распределёнными на несколько кристаллов. Хотя наличие нескольких кристаллов позволяет обеспечить лучшую экономию энергии и регулировать частоты отдельных ядер для нужд приложения.

Настоящие четырёхядерные процессоры используют четыре ядра, которые, вместе с кэш-памятью, располагаются на одном кристалле. Здесь важно наличие общего унифицированного кэша. AMD будет реализовывать такой подход, оснащая 512 кбайт кэша L2 каждое ядро и добавляя кэш L3 для всех ядер. Преимущество AMD заключается в том, что можно будет выключать отдельные ядра и ускорять другие, чтобы получить более высокую производительность однопоточных приложений. Intel пойдёт тем же путём, но не раньше представления в 2008 году архитектуры Nehalem.

Утилиты вывода системной информации, такие, как CPU-Z, позволяют узнать число ядер и объёмы кэша, но не раскладку процессора. Вы не узнаете, что Core 2 Quad (или четырёхядерный Extreme Edition, показанный на скриншоте) состоит из двух ядер.


Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (

От количества ядер в центральном процессоре сильно зависит общая производительность системы, особенно в многозадачном режиме. Узнать их количество можно как при помощи стороннего ПО, так и стандартными методами Windows.

Большинство процессоров сейчас 2-4 ядерные, но имеются дорогие модели для игровых компьютеров и дата-центров на 6 и даже 8 ядер. Ранее, когда центральный процессор имел всего одно ядро, вся производительность заключалась в частоте, а работа с несколькими программами одновременно могла полностью «повесить» ОС.

Определить количество ядер, а также посмотреть на качество их работы, можно при помощи решений, встроенных в саму Windows, или сторонних программ (в статье будут рассмотрены самые популярные из них).

Способ 1: AIDA64

– это популярная программа для мониторинга производительности компьютера и проведения различных тестов. ПО платное, но есть тестовый период, которого хватит для того, чтобы узнать количество ядер в ЦП. Интерфейс AIDA64 полностью переведён на русский язык.

Инструкция выглядит следующим образом:


Способ 2: CPU-Z

CPU-Z – бесплатная программа, которая позволяет получить всю основную информацию о комплектующих компьютера. Имеет простой интерфейс, который переведён на русский язык.

Чтобы узнать количество ядер при помощи этого ПО, достаточно просто его запустить. В главном окне найдите в самом низу, в правой части, пункт «Cores» . Напротив него будет написано количество ядер.

Способ 3: Диспетчер задач

Данный способ подходит только для пользователей ОС Windows 8, 8.1 и 10. Выполните эти действия, чтобы узнать количество ядер таким способом:


Способ 4: Диспетчер устройств

Этот способ подходит для всех версий Windows. Используя его, следует помнить, что на некоторые процессоры от Intel информация может быть выдана неверно. Дело в том, что ЦП от Intel используют технологию Hyper-threading, которая делит одно ядро процессора на несколько потоков, тем самым повышая производительность. Но при этом «Диспетчер устройств» может видеть разные потоки на одном ядре как несколько отдельных ядер.

Пошаговая инструкция выглядит так:


Самостоятельно узнать количество ядер в центральном процессоре несложно. Также можно просто посмотреть характеристики в документации к компьютеру/ноутбуку, если есть под рукой. Или «загуглить» модель процессора, если вы её знаете.

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Понравилось? Лайкни нас на Facebook